Referencias
Agresti, A. (2007). An Introduction to Categorical Data Analysis (2.ª ed.). John Wiley & Sons.
American Psychological Association. (2010). Publication Manual of the American Psychological Association (6.ª ed.).
Appelhans, T., Detsch, F., Reudenbach, C., & Woellauer, S. (2020). mapview: Interactive Viewing of Spatial Data in R. https://CRAN.R-project.org/package=mapview
Ben-Shachar, M. S., Makowski, D., & Lüdecke, D. (2020). effectsize: Indices of Effect Size and Standardized Parameters. https://CRAN.R-project.org/package=effectsize
Bivand, R., Keitt, T., & Rowlingson, B. (2019). rgdal: Bindings for the ’Geospatial’ Data Abstraction Library. https://CRAN.R-project.org/package=rgdal
Bivand, R., & Rundel, C. (2019). rgeos: Interface to Geometry Engine - Open Source (’GEOS’). https://CRAN.R-project.org/package=rgeos
Borradaile, G. J. (2003). Statistics of Earth Science Data: Their Distribution in Time, Space and Orientation. Springer-Verlag Berlin Heidelberg.
Bray, A., Ismay, C., Chasnovski, E., Baumer, B., & Cetinkaya-Rundel, M. (2019). infer: Tidy Statistical Inference. https://CRAN.R-project.org/package=infer
Buchanan, E. M., Gillenwaters, A. M., Scofield, J. E., & Valentine, K. D. (2019). MOTE: Effect Size and Confidence Interval Calculator. https://CRAN.R-project.org/package=MOTE
Canty, A., & Ripley, B. (2019). boot: Bootstrap Functions (Originally by Angelo Canty for S). https://CRAN.R-project.org/package=boot
Chan, C.-h., & Leeper, T. J. (2018). rio: A Swiss-Army Knife for Data I/O. https://CRAN.R-project.org/package=rio
Cheng, J., Karambelkar, B., & Xie, Y. (2018). leaflet: Create Interactive Web Maps with the JavaScript ’Leaflet’ Library. https://CRAN.R-project.org/package=leaflet
Chilès, J.-P., & Delfiner, P. (1999). Geostatistics: Modeling Spatial Uncertainty (2.ª ed.). John Wiley & Sons.
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2.ª ed.). Erlbaum.
Comtois, D. (2019). summarytools: Tools to Quickly and Neatly Summarize Data. https://CRAN.R-project.org/package=summarytools
Cressie, N. A. C. (1993). Statistics for Spatial Data. John Wiley & Sons.
Cumming, G. (2014). The New Statistics: Why and How. Psychological Science, 25(1), 7-29. https://doi.org/10.1177/0956797613504966
Cumming, G. (2012). Understanding The New Statistics - Effect Sizes, Confidence Intervals, and Meta-Analysis. Rutledge.
Cumming, G., & Calin-Jageman, R. (2017). Introduction to the New Statistics: Estimation, Open Science, and Beyond. Rutledge.
Cumming, G., & Finch, S. (2005). Inference by Eye: Confidence Intervals and How to Read Pictures of Data. American Psychologist, 60(2), 170-180. https://doi.org/10.1037/0003-066X.60.2.170
Davis, J. C. (2002). Statistics and Data Analysis in Geology (3.ª ed.). John Wiley & Sons.
Dunnington, D. (2018). ggspatial: Spatial Data Framework for ggplot2. https://CRAN.R-project.org/package=ggspatial
Ellis, P. D. (2010). The Essential Guide to Effect Sizes : Statistical Power, Meta-Analysis, and the Interpretation of Research Results. Cambridge University Press.
Erceg-Hurn, D., Cumming, G., & Calin-Jageman, R. (2017). itns: Datasets from the book Introduction to the New Statistics.
Field, A., Miles, J., & Field, Z. (2012). Discovering Statistics Using R. SAGE Publications Ltd.
Fisher, N. I., Lewis, T., & Embleton, B. J. J. (1993). Statistical Analysis of Spherical Data. Cambridge University Press.
Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: Current use, calculations, and interpretation. Journal of Experimental Psychology: General, 141(1), 2-18. https://doi.org/10.1037/a0024338
Garnier-Villarreal, M. (2020). GMisc: Miscellaneous Functions for Geology (and its areas). http://github.com/maxgav13/GMisc
Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. Oxford University Press.
Grissom, R. J., & Kim, J. J. (2005). Effect Sizes for Research: A Broad Practical Approach. Erlbaum.
Grolemund, G., & Wickham, H. (2016). R for Data Science. O’Reilly. https://bookdown.org/roy_schumacher/r4ds/
Hedges, L. V., & Olkin, I. (1985). Statistical Methods for Meta-Analysis. Academic Press.
Henry, L., & Wickham, H. (2020). purrr: Functional Programming Tools. https://CRAN.R-project.org/package=purrr
Hester, J., & Wickham, H. (2020). fs: Cross-Platform File System Operations Based on ’libuv’. https://CRAN.R-project.org/package=fs
Hijmans, R. J. (2020a). raster: Geographic Data Analysis and Modeling. https://CRAN.R-project.org/package=raster
Hijmans, R. J. (2020b). terra: Classes and Methods for Spatial Data. https://CRAN.R-project.org/package=terra
Horikoshi, M., & Tang, Y. (2020). ggfortify: Data Visualization Tools for Statistical Analysis Results. https://CRAN.R-project.org/package=ggfortify
Isaaks, E. H., & Srivastava, R. M. (1989). Applied Geostatistics. Oxford University Press.
Kassambara, A. (2020). rstatix: Pipe-Friendly Framework for Basic Statistical Tests. https://CRAN.R-project.org/package=rstatix
Kuhn, M., Chow, F., & Wickham, H. (2019). rsample: General Resampling Infrastructure. https://CRAN.R-project.org/package=rsample
Kuhn, M., & Wickham, H. (2020). tidymodels: Easily Install and Load the ’Tidymodels’ Packages. https://CRAN.R-project.org/package=tidymodels
Kunst, J. (2019). highcharter: A Wrapper for the ’Highcharts’ Library. https://CRAN.R-project.org/package=highcharter
Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00863
Lüdecke, D., Makowski, D., Ben-Shachar, M. S., Patil, I., & Højsgaard, S. (2020). parameters: Processing of Model Parameters. https://CRAN.R-project.org/package=parameters
Lüdecke, D., Makowski, D., & Waggoner, P. (2020). performance: Assessment of Regression Models Performance. https://CRAN.R-project.org/package=performance
Magnusson, K. (2020). Interpreting Cohen’s d Effect Size: An Interactive Visualization (Versión 2.1.1) [Computer software]. https://rpsychologist.com/d3/cohend/
Mangiafico, S. (2020). rcompanion: Functions to Support Extension Education Program Evaluation. https://CRAN.R-project.org/package=rcompanion
Mardia, K. V., & Jupp, P. E. (2000). Directional Statistics. John Wiley & Sons.
McGrath, R. E., & Meyer, G. J. (2006). When effect sizes disagree: The case of r and d. Psychological Methods, 11(4), 386-401. https://doi.org/10.1037/1082-989X.11.4.386
McGraw, K. O., & Wong, S. P. (1992). A Common Language Effect Size Statistic. Psychonomic Bulletin, 111(2), 361-365.
McKillup, S., & Darby Dyar, M. (2010). Geostatistics Explained: An Introductory Guide for Earth Scientists. Cambridge University Press. www.cambridge.org/9780521763226
Meyer, D., Zeileis, A., & Hornik, K. (2017). vcd: Visualizing Categorical Data. https://CRAN.R-project.org/package=vcd
Morgan-Wall, T. (2019). rayshader: Create and Visualize Hillshaded Maps from Elevation Matrices. https://CRAN.R-project.org/package=rayshader
Nakagawa, S., & Cuthill, I. C. (2007). Effect size, confidence interval and statistical significance: A practical guide for biologists. Biological Reviews, 82(4), 591-605. https://doi.org/10.1111/j.1469-185X.2007.00027.x
Neuwirth, E. (2014). RColorBrewer: ColorBrewer Palettes. https://CRAN.R-project.org/package=RColorBrewer
Nolan, S. A., & Heinzen, T. E. (2014). Statistics for the Behavioral Sciences (3.ª ed.). Worth Publishers.
Nowosad, J. (2019). Geostatystyka w R. https://bookdown.org/nowosad/Geostatystyka/
Olejnik, S., & Algina, J. (2000). Measures of Effect Size for Comparative Studies: Applications, Interpretations, and Limitations. Contemporary Educational Psychology, 25(3), 241-286. https://doi.org/10.1006/ceps.2000.1040
Pebesma, E. (2020a). sf: Simple Features for R. https://CRAN.R-project.org/package=sf
Pebesma, E. (2020b). stars: Spatiotemporal Arrays, Raster and Vector Data Cubes. https://CRAN.R-project.org/package=stars
Pebesma, E., & Bivand, R. (2020a). Spatial Data Science. https://keen-swartz-3146c4.netlify.app
Pebesma, E., & Bivand, R. (2020b). sp: Classes and Methods for Spatial Data. https://CRAN.R-project.org/package=sp
Pebesma, E., & Graeler, B. (2020). gstat: Spatial and Spatio-Temporal Geostatistical Modelling, Prediction and Simulation. https://CRAN.R-project.org/package=gstat
Pedersen, T. L. (2019). patchwork: The Composer of Plots. https://CRAN.R-project.org/package=patchwork
R Core Team. (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/
Reiser, B., & Faraggi, D. (1999). Confidence intervals for the overlapping coefficient: The normal equal variance case. Journal of the Royal Statistical Society, 48(3), 413-418.
Revelle, W. (2020). psych: Procedures for Psychological, Psychometric, and Personality Research. https://CRAN.R-project.org/package=psych
Robinson, D., & Hayes, A. (2020). broom: Convert Statistical Analysis Objects into Tidy Tibbles. https://CRAN.R-project.org/package=broom
Ruscio, J. (2008). A probability-based measure of effect size: Robustness to base rates and other factors. Psychological Methods, 13(1), 19-30. https://doi.org/10.1037/1082-989X.13.1.19
Sarma, D. D. (2009). Geostatistics with Application in Earth Sciences (2.ª ed.). Springer.
Sheskin, D. J. (2011). Handbook of Parametric and Nonparametric Statistical Procedures (5.ª ed.). CRC Press.
Sievert, C., Parmer, C., Hocking, T., Chamberlain, S., Ram, K., Corvellec, M., & Despouy, P. (2020). plotly: Create Interactive Web Graphics via ’plotly.js’. https://CRAN.R-project.org/package=plotly
Signorell, A. (2020). DescTools: Tools for Descriptive Statistics. https://CRAN.R-project.org/package=DescTools
Swan, A., & Sandilands, M. (1995). Introduction to Geological Data Analysis. Blackwell Science.
Tennekes, M. (2019). tmap: Thematic Maps. https://CRAN.R-project.org/package=tmap
Thompson, B. (2007). Effect sizes, confidence intervals, and confidence intervals for effect sizes. Psychology in the Schools, 44(5), 423-432. https://doi.org/10.1002/pits.20234
Tomczak, M., & Tomczak, E. (2014). The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends in Sport Sciences, 1(21), 19-25.
Torchiano, M. (2018). effsize: Efficient Effect Size Computation. https://CRAN.R-project.org/package=effsize
Trauth, M. (2015). MATLAB® Recipes for Earth Sciences (4.ª ed.). Springer-Verlag Berlin Heidelberg.
Triola, M. F. (2004). Probabilidad y Estadística (9.ª ed.). Pearson Educación.
Tsirlin, I., & MindTheData.blog. (2020). Stattistics Cheat Sheet - Part 1. https://mindthedata.blog/2020/05/14/statistics-cheat-sheet-part-1/?fbclid=IwAR3t1JyjnUfTe6pritejAOETc3n5OvnWxyCmlrhjR6B7LpEr81IhscQhAIo
Vanderkam, D., Allaire, J., Owen, J., Gromer, D., & Thieurmel, B. (2018). dygraphs: Interface to ’Dygraphs’ Interactive Time Series Charting Library. https://CRAN.R-project.org/package=dygraphs
Wackernagel, H. (2003). Multivariate Geostatistics (3.ª ed.). Springer-Verlag Berlin Heidelberg.
Walpole, R. E., Myers, R. H., & Myers, S. L. (2012). Probabilidad y Estadística Para Ingeniería y Ciencias. Pearson.
Waring, E., Quinn, M., McNamara, A., Arino de la Rubia, E., Zhu, H., & Ellis, S. (2019). skimr: Compact and Flexible Summaries of Data. https://CRAN.R-project.org/package=skimr
Webster, R., & Oliver, M. A. (2007). Geostatistics for Environmental Scientists (2.ª ed.). John Wiley & Sons.
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., Woo, K., Yutani, H., & Dunnington, D. (2020). ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. https://CRAN.R-project.org/package=ggplot2
Wilke, C. O. (2019). cowplot: Streamlined Plot Theme and Plot Annotations for ’ggplot2’. https://CRAN.R-project.org/package=cowplot
Xie, Y. (2014). knitr: A Comprehensive Tool for Reproducible Research in R. En V. Stodden, F. Leisch, & R. D. Peng (Eds.), Implementing Reproducible Computational Research. Chapman; Hall/CRC. http://www.crcpress.com/product/isbn/9781466561595
Xie, Y. (2015). Dynamic Documents with R and knitr (2nd ed.). Chapman; Hall/CRC. https://yihui.org/knitr/
Xie, Y. (2016). bookdown: Authoring Books and Technical Documents with R Markdown. Chapman; Hall/CRC. https://github.com/rstudio/bookdown
Xie, Y., Allaire, J., & Grolemund, G. (2018). R Markdown: The Definitive Guide. Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown
Xie, Y., Cheng, J., & Tan, X. (2019). DT: A Wrapper of the JavaScript Library ’DataTables’. https://CRAN.R-project.org/package=DT
Zeileis, A., Grothendieck, G., & Ryan, J. A. (2020). zoo: S3 Infrastructure for Regular and Irregular Time Series (Z’s Ordered Observations). https://CRAN.R-project.org/package=zoo
Zhang, Y.-Y. (2013). OneTwoSamples: Deal with one and two (normal) samples. https://CRAN.R-project.org/package=OneTwoSamples
Zou, G. Y. (2007). Toward using confidence intervals to compare correlations. Psychological Methods, 12(4), 399-413. https://doi.org/10.1037/1082-989X.12.4.399